C++泛型编程函(数模板+类模板)

来自:网络
时间:2022-08-07
阅读:
目录

前言:

由于C++是静态语言,也就是说使用一个数据的时候必须先指定类型,这样的操作在编译后变量的类型是无法轻易改变的,就导致扩展性太差。或者一个函数需要很多次重载的时候,代码显得冗杂,由此产生了C++函数模板。

一、函数模板

1.函数模板介绍

① 函数模板的产生背景:

  • 在编程时多多少少会因为函数参数不同写几个重载函数;
  • 函数模板的出现解决了仅仅因为参数类型不同而进行的函数重载;

解决方法:让类型作为参数传进函数或者自动类型推导,从而实现不同的功能;

② 函数模板的语法:

tmplate<typename T>

返回类型 函数名(参数列表){函数体}

③ 函数模板的调用方式:

  • 1.明显的调用  函数名<参数类型>(实参);-------------常用
  • 2.自动函数推导  函数名(实参)

④ 函数模板的本质:类型参数化!

函数模板举例

  • 重载了三次的max函数,使用函数模板一次就可以解决
#include<iostream>
using namespace std;
//--------------------------------函数模板前的比较大小
int  max(int a,char b) {
    return (a > b ? a : b);
}
float max(float a, float b) {
    return (a > b ? a : b);
}
long int max(long int a, long int b) {
    return (a > b ? a : b);
}
//--------------------------------用函数模板进行比较大小
template<typename T>
T max(T& a, T& b) {
    return (a > b ? a : b);
}
int main_001() {
    int a = 10;
    int b = 20;
    char a2 = 'a',b2='b';
    cout << max<int >(a, b) << endl;
    cout<<max(a, b)<<endl;
    cout << max(a2, b2) << endl;;
    return 0;
}

2.函数模板与重载函数的关系

① 普通函数的特性:

  • 可以(隐式)进行参数类型自动转换;

② 函数模板的特性:

  • 数参数类型相同的话传进来的实参类型也必须相同(不允许自动转换);

调用规则:

  • 调用函数时优先考虑普通函数
  • 如果函数模板会有一个更好的匹配,那么选择模板函数;
  • 可以通过空模板实参列表的语法限定编译器只通过模板匹配;
  • 函数模板像普通函数一样也可以被重载

使用规则如下:

clude<iostream>
using namespace std;
//此函数模板T1 T2代表两个不同类型的参数
//所以传进来的参数也要是不同类型(可以通过简单的操作改为传相同类型的参数)
template<typename T1,typename T2>
int  myadd(T1 a, T2 b) {
    return a + b;
}
int myadd(int a, int b) {
    return a + b;
}
int myadd(int a, char b) {
    return a + b;
}
int main() {
    int a = 10;
    int b = 20;
    char c = 'c';
    cout << myadd(a,b) << endl;//----------调用add(int,int)-----优先匹配的普通函数
    cout << myadd(a,c) << endl;//----------调用add(int ,char)
    cout << myadd(c,a) << endl;//----------调用add(t1,t2)-------没有该类型的普通函数就调用模板函数
    cout << myadd(c,c) << endl;//----------调用add(t1,t2)
    cout << myadd<>(a, b) << endl;//-------强制调用add(t1,t2)
    return 0;
}

3.函数模板实现机制

① 函数模板与模板函数:

1.函数模板:------------------------------仅仅是一个模板,并未被实例化(空壳子)

template <typename T>

返回类型 函数名 (参数列表){函数体}

2.模板函数:------------------------------通过类型的传入,将函数模板实例化

 函数模板的函数名<类型名>(参数列表);

② 函数模板机制剖析:

  • 函数模板并不会直接产生能处理任意类型的参数的函数;
  • 而是通过产生对应的模板函数实现对不同类型参数的处理;

函数模板进行两次编译:
    1.函数模板声明的地方,对函数模板代码本身进行编译
    2.将类型插入后在调用的地方对插入参数后的代码进行编译

二、类模板

1.类模板基本语法

① 单个模板类:

基本语法:

  template<typename T>或template<class T>
  class 类名{private: T a;};

注意事项:

模板类是一个抽象类,定义对象时需要参数类型的传入

具体实现如下:

#include<iostream>
using namespace std;
template <class T>
class A {
public:
    void seta(T &a) {
        this->a = a;
    }
    void printA() {
        cout << this->a << endl;
    }
protected:
    T a;
};
int main() {
    int x = 888;
    A<int> a1;
    a1.seta(x);
    a1.printA();
    char xx = 'x';
    A<char> a2;
    a2.seta(xx);
    a2.printA();
    return 0;
}

② 模板类被具体类继承:

基本语法:

  定义: class 具体类名 :public 模板类名<参数类型>{};

  •  继承后的操作与普通类之间继承一样;

实现方法如下:

#include<iostream>
using namespace std;
template <class T>
class A {
public:
    void seta(T &a) {
        this->a = a;
    }
    void printA() {
        cout << this->a << endl;
    }
protected:
    T a;
};
class B :public A<int> {
private:
    int b;
public:
    void setb(int b) {
        this->b = b;
    }
    void printB() {
        cout << this->b << endl;
    }
};
int main() {
    int x = 888;
    B b1;
    b1.setb(999);
    b1.printB();
    b1.seta(x);
    b1.printA();
    return 0;
}

③ 模板类被模板类继承

类继承:

基本语法:
  template<typename T>
  class 模板类名 :public 基类模板类名<T>{ };

具体实现方法:

#include<iostream>
using namespace std;
template <class T>
class A {
public:
    void seta(T &a) {
        this->a = a;
    }
    void printA() {
        cout << this->a << endl;
    }
protected:
    T a;
};
template <class T>
class C :public A<T> {//----------语法所在地
private:
    T c;
public:
    void setC(T &c) {
        this->c = c;
    }
    void printC() {
        cout << this->c << endl;
    }
};
class B :public A<int> {
private:
    int b;
public:
    void setb(int b) {
        this->b = b;
    }
    void printB() {
        cout << this->b << endl;
    }
};
int main() {
    int p = 99;
    C<int> c1;
    c1.setC(p);
    c1.printC();
    char pp = '6';
    C<char> c2;
    c2.setC(pp);
    c2.printC();
    return 0;
}

2.类模板内函数的整体布局【分文件使用类模板】

①所有函数均在类的内部

实现方法如下:

#include<iostream>
using namespace std;
template<typename T>
class complex1 {
    friend ostream& operator<< <T>(ostream &out, complex1 &obj);
private:
    T a;
    T b;
public:
    complex1(T a=0, T b=0) {
        this->a = a;
        this->b = b;
    }
    complex1 operator+(complex1 obj) {
        complex1 tem(a+obj.a,b+obj.b);
        return tem;
    }
    void printa() {
        cout << a << endl;
    }
    void printb() {
        cout << b << endl;
    }
    
};
template<typename T>
ostream& operator<<(ostream &out, complex1<T> &obj) {
        out << obj.a << "+" << obj.b << "i" << endl;
        return out;
    }
int main_11() {
    complex1<int> a(1, 2), b(3, 4);
    complex1<int>c = a + b;
    cout << c << a << b;
    a.printa();
    a.printb();
    return 0;
}

②所有函数均在类的外部,但在同一文件

员函数实现语法:

 原型: 类名 函数名 (参数列表);

修改后的形式:  
    template <typename T>
    类名<T> 函数名 (参数列表)------参数列表该加T的就加T

流运算符 友元函数实现语法:
    原型(声明): friend 返回类型 函数名 (参数列表);

 修改后的形式:
    (声明) :friend 返回类型 函数名 <T> (参数列表) ;
    template<typename T>
    (函数实现): 返回类型 函数名 (参数列表){};------类的对象做参数时修改为 类名<T>;

具体实现如下:

#include<iostream>
using namespace std;
template<typename T>
class complex2 {
    friend ostream& operator<< <T>(ostream& out, complex2& obj);
private:
    T a;
    T b;
public:
    complex2(T a = 0, T b = 0);
    complex2 operator+(complex2 obj);
    void printa();
    void printb();
};
template<typename T>
complex2<T>::complex2<T>(T a , T b ) {
    this->a = a;
    this->b = b;
}
template<typename T>
complex2<T> complex2<T>::operator+(complex2 obj) {
    complex2 tem(a + obj.a, b + obj.b);
    return tem;
}
template<typename T>
void complex2<T>::printa() {
    cout << a << endl;
}
template<typename T>
void complex2<T>::printb() {
    cout << b << endl;
}
template<typename T>
ostream& operator<<(ostream& out, complex2<T>& obj) {
    out << obj.a << "+" << obj.b << "i" << endl;
    return out;
}
int main_dd() {
    complex2<int> a(1, 2), b(3, 4);
    complex2<int>c = a + b;
    cout << c << a << b;
    a.printa();
    a.printb();
    return 0;
}

③ 所有函数均在类的外部,但在不同文件

将类分文件写后,将类函数实现的部分包含进主函数所在的文件

实现方法:

include"xxxx.cpp"

示例:

头文件:

#pragma once
#include<iostream>
using namespace std;
template<typename T>
class complex {
    friend ostream& operator<< <T>(ostream& out, complex& obj);
private:
    T a;
    T b;
public:
    complex(T a = 0, T b = 0);
    complex operator+(complex obj);
    void printa();
    void printb();
};

函数实现:

#include<iostream>
using namespace std;
#include"复数类3.h"
template<typename T>
complex<T>::complex<T>(T a, T b) {
    this->a = a;
    this->b = b;
}
template<typename T>
complex<T> complex<T>::operator+(complex obj) {
    complex tem(a + obj.a, b + obj.b);
    return tem;
}
template<typename T>
void complex<T>::printa() {
    cout << a << endl;
}
template<typename T>
void complex<T>::printb() {
    cout << b << endl;
}
template<typename T>
ostream& operator<<(ostream& out, complex<T>& obj) {
    out << obj.a << "+" << obj.b << "i" << endl;
    return out;
}

主函数:

#include<iostream>
using namespace std;
#include"复数类3h.cpp"//重点
int main() {
    complex<int> a(1, 2), b(3, 4);
    complex<int>c = a + b;
    cout << c << a << b;
    a.printa();
    a.printb();
    return 0;
}

3.类模板的static与模板类的static

类模板定义了变量,函数实现的步骤,但没有数据类型的插入,所以类模板仅仅是模板;
类模板的实现机制是程序员给出数据类型,编译器对具体的类进行实现,产生不同类型的类;
所以,类模板中的静态成员变量是某个类型的具体类独有的成员变量;只是被该类型对象所公有

区别如下:

  •     模板类中的static变量可以被该模板类的对象公用    
  •     类模板的static经过类不同方式的实例化,会产生不同的static变量,
  •     且该变量只供初始化他的类使用

4.数组实现万能容器

testarray类是一个类模板,里面有一个指针类型,所以通过程序员主动实现模板类传参可以存储不同类型的数据,也就是说testarray理论可以存储任意类型的数据。

#include<iostream>
using namespace std;
class teacher {
private:
    char *name;
    char *sex;
    int age;
public:
    teacher() {
        name = NULL;
        sex = NULL;
        age = 0;
    }
    teacher(teacher& obj) {
        if (name != NULL) {
            delete [] name;
            delete[] sex;
        }
        age = obj.age;
        name = new char [sizeof(obj.name)];
        sex = new char[sizeof(obj.sex)];
        strcpy_s(name, sizeof(obj.name), obj.name);
        strcpy_s(sex, sizeof(obj.sex), sex);
    }
    void setname(char *name) {
        this->name = new char[strlen(name)+1];
        strcpy_s(this->name, strlen(name)+1, name);
    }
    void setage(int age) {
        this->age = age;
    }
    void setsex(char* sex) {
        this->sex = new char[strlen(sex)+1];
        strcpy_s(this->sex, strlen(sex)+1, sex);
    }
    friend ostream& operator<<(ostream& out, teacher& obj);
};
ostream& operator<<(ostream& out, teacher& obj) {
    cout << "姓名" << "\t" << "性别" << "\t" << "年龄" << endl;
    cout << obj.name << "\t" << obj.sex << "\t" << obj.age << endl;
    return out;
}
ostream& operator<<(ostream& out, teacher& obj);
template <typename T>
class testarray {
    friend ostream& operator<< <T>(ostream& out, testarray& obj);
private:
    int len;
    T* myarray;
public:
    testarray() {
        len = 0;
        myarray = NULL;
    }
    testarray(int len) {
        this->len=len;
        myarray = new T[len];
    }
    testarray(testarray & obj) {
        len = obj.len;
        myarray = new testarray;
        strcmp_s(myarray, len, obj.myarray);
    }
    T& operator[](int xx) {
        return myarray[xx];
    }    
};
template<typename T>
ostream& operator<<(ostream& out,testarray<T>& obj) {
    for (int i = 0;i < obj.len;i++) {
        cout << obj[i] <<" ";
    }
    cout << endl;
    return out;
}
int main() {
    testarray<int> aint(10);
    testarray<char> bchar(10);
    testarray<teacher> tea(3);
    teacher t1, t2, t3;
    char name1[]="小李",name2[]="小朱",name3[]="小黄";
    char sex1[] = "男", sex2[] = "女";
    t1.setname(name1);
    t1.setsex(sex2);
    t1.setage(40);
    t2.setname(name2);
    t2.setsex(sex1);
    t2.setage(20);
    t3.setname(name3);
    t3.setsex(sex1);
    t3.setage(28);
    tea[0] = t1;
    tea[1] = t2;
    tea[2] = t3;
    for (int i = 0;i < 10;i++) {
        aint[i] = i;
    }
    for (int i = 0;i < 10;i++) {
        bchar[i] = i + 97;
    }
    cout << aint;
    cout << bchar;
    cout << tea;
    return 0;
}

效果图:

C++泛型编程函(数模板+类模板)

实现思路:

  •     类模板实现对不同数据类型的变量进行处理后
  •     该变量要有针对该操作  自己处理自身的方法

换句话说就是:

  •     类模板仅仅对某种类型的处理发出指令
  •     而细枝末节的处理方式(算法),要该类型自己的方法去实现

总结:

类模板与函数模板一样也会经过两次编译,在此文中重点区分一下类模板与模板类,函数模板与模板函数的概念,泛型编程是C++开发的一大精髓,灵活地运用泛型编程对我们以后学习其他的编程语言有很大的帮助

返回顶部
顶部